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BACKGROUND: Regulatory analyses of air pollution policies require the use of concentration–response functions and underlying health data to estimate
the mortality and morbidity effects, as well as the resulting benefits, associated with policy-related changes in fine particulate matter ≤2:5 lm (PM2:5)].
Common practice by U.S. federal agencies involves using underlying health data and concentration–response functions that are not differentiated by
racial/ethnic group.

OBJECTIVES: We aim to explore the policy implications of using race/ethnicity-specific concentration–response functions and mortality data in com-
parison to standard approaches when estimating the impact of air pollution on non-White racial/ethnic subgroups.

METHODS: Using new estimates from the epidemiological literature on race/ethnicity-specific concentration–response functions paired with race/
ethnicity-specific mortality rates, we estimated the mortality impacts of air pollution from all sources from a uniform increase in concentrations and
from the regulations imposed by the Mercury Air Toxics Standards.

RESULTS: Use of race/ethnicity-specific information increased PM2:5-related premature mortality estimates in older populations by 9% and among
older Black Americans by 150% for all-source pollution exposure. Under a uniform degradation of air quality and race/ethnicity-specific information,
older Black Americans were found to have approximately 3 times higher mortality relative to White Americans, which is obscured under a non–race/
ethnicity-specific modeling approach. Standard approaches of using non–racial/ethnic specific information underestimate the benefits of the Mercury
Air Toxics Standards to older Black Americans by almost 60% and overestimate the benefits to older White Americans by 14% relative to using a
race/ethnicity-specific modeling approach.

DISCUSSION: Policy analyses incorporating race/ethnicity-specific concentration–response functions and mortality data relative to nondifferentiated
inputs underestimate the overall magnitude of PM2:5 mortality burden and the disparity in impacts on older Black American populations. Based on
our results, we recommend that the best available race/ethnicity-specific inputs are used in regulatory assessments to understand and reduce environ-
mental injustices. https://doi.org/10.1289/EHP9001

Introduction
Among the air pollutants regulated by the Clean Air Act of 1970
(CAA), prior studies find that fine particulate matter [particulate
matter with an aerodynamic diameter of ≤2:5 lm (PM2:5)] is re-
sponsible for the largest share of estimated costs of air pollution
(U.S. EPA 1999, 2011a; Muller et al. 2011). The bulk of PM2:5
costs are through premature deaths (U.S. EPA Agency 2011b); in
2011, an estimated 107,000 premature deaths in the United States
were attributed to air pollution (Goodkind et al. 2019).

The U.S. Environmental Protection Agency (U.S. EPA) is
required to carry out benefit–cost and regulatory impact analyses
to assess the effects of the CAA and associated administrative rules
(U.S. EPA 2012). Reductions in PM2:5-induced mortality are a
major contributor to benefits of air pollution policies. Most analy-
ses used by the U.S. EPA to quantify lowered mortality risks asso-
ciated with PM2:5 reductions employ a log-linear concentration–
response function (CRF) between PM2:5 exposure and mortality.
Two such CRFs typically used are from the American Cancer
Society (ACS) study (Krewski et al. 2009) and the Harvard Six
Cities analysis (Lepeule et al. 2012). However, these studies

evaluated populations composed of people of socioeconomic sta-
tus (SES) higher than the national average, predominantly White
populations in well-monitored urban areas (for example, Black
Americans constitute only 4% of the population in ACS CPSII
study) (Pope et al. 1995). Thus, these estimates provide limited in-
formation on the health effects of air pollution in rural areas, among
racial/ethnicminorities, or in low-SES populations.

Recent evidence from a study of all Medicare beneficiaries
(with 60,925,443 Americans) indicates that the impact of PM2:5 on
mortality among older populations is 3 times higher for Black
Americans than for White Americans, including at exposures below
the current National Ambient Air Quality Standard (NAAQS) for
PM2:5 (annual average 12lg=m3) (Di et al. 2017). Although multi-
ple studies have demonstrated that people of color and other disad-
vantaged populations have disproportionately higher exposures to
air pollution than White Americans (Hajat et al. 2015; Tessum et al.
2019), we incorporate and document the additional impact that
higher baseline mortality rates and higher pollution susceptibility
have on pollution-caused health outcomes across these racial/ethnic
groups. Standard practice in most health risk assessments involves
applying CRFs to all adult populations, assuming no differences in
pollution-related risk of death across racial/ethnic groups and con-
centration levels and combined with population-weighted average
mortality rates. We hypothesize that the use of CRFs and underlying
health data that are not differentiated by racial/ethnic subgroup
would lead to an underestimation of the health impacts of air pollu-
tion, especially for racial/ethnic minority communities.

This study contributes to the extant literature in several ways.
First, we estimate air pollution deaths among older populations
(65+ y of age) using the 2014 National Emissions Inventory
(NEI), a comprehensive (economy-wide) inventory available for
the United States (U.S. EPA 2016). Second, we capitalize on
recent innovations in the epidemiological literature that report both
nonlinear relationships between ambient PM2:5 concentrations and
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mortality risk faced by older individuals, as well as race/ethnicity-
specific concentration–response functions (CRFs). Because this
new epidemiological study relied on the Medicare population, we
only estimate deaths for the relevant age groups (65+). Ours is the
first study to use these new results in a national assessment of the
health impact from PM2:5 among older populations. Furthermore,
we employed baseline health data specific to subgroups of interest
(specifically, the five largest racial/ethnic groups: White, Black
American, Hispanic American, Asian American, and Native
American). Third, partially motivated by increases in PM2:5 ambi-
ent concentrations between the years 2016 and 2018 (Clay and
Muller 2019), we analyzed and quantify mortality impacts in older
populations and associated costs from a simulated uniform
1lg=m3-increase in PM2:5 and break these down by racial/ethnic
group. Finally, we also explored the public health benefits of the
Mercury and Air Toxics Standards (MATS). This aspect of the pa-
per developed a “no-MATS” counterfactual, and it then assessed,
on a county-level basis, the distribution of mortality risks and costs
that MATS avoided.

Materials and Methods

PM2:5-Attributable Premature Mortality
We first estimated premature mortality attributable to PM2:5 ex-
posure. To do so, we employed the Air Pollution Emissions
Experiments and Policy Analysis (APEEP) integrated assessment
model [version 3 (AP3)] (Clay et al. 2019; Muller 2014). AP3 is an
updated version of the second version ofAPEEP-AP2 (Holland et al.
2016; Jaramillo and Muller 2016). The model, run in MATLAB®,
uses emissions of local air pollutants to estimate the ambient con-
centrations of PM2:5, resulting exposures,mortality risks, andmone-
tary costs. The model encompasses emissions of five pollutants:
sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), pri-
mary PM2:5, and volatile organic compounds (VOC). All emissions
of these pollutants reported by the U.S. EPA in the 2014 NEI
released in the contiguous United States are included. AP3 differen-
tiates emissions by source type and locations. It models nearly 700
individual point sources and attributes all remaining point source
emissions reported by the U.S. EPA to the county in which the facil-
ity exists. TheU.S. EPA reports ground-level, area source emissions
(cars, trucks, trains, households, small businesses, and agriculture,
among others) as aggregated county emissions. AP3 attributes these
discharges to the county inwhich theU.S. EPA reports the release.

AP3 employs an air-quality model to link emissions to concen-
trations. Fundamentally, the model relies on Gaussian dispersion
modeling. However, it employs simplified representations of the
atmospheric chemical processes that link SO2, NOx, NH3, and
VOC emissions to ambient concentrations of secondary PM2:5.
Themodel uses rate constants alongwith amodule applied in every
receptor location which translates ambient predicted concentra-
tions into ambient sulfate, ammonium nitrate, and ammonium.
Each of these species are important constituents of total PM2:5. The
predictions of total ambient PM2:5 produced by AP3 have been
evaluated against both monitoring data provided publicly by the
U.S. EPA and predicted concentrations produced by chemical
transport models in previous analyses (Gilmore et al. 2019). The
comparison of predicted annual means from an earlier version of
AP3 with ambient monitoring data revealed a correlation coeffi-
cient for total PM2:5 of about 0.60, which was on par with that from
a chemical transport model included in the analysis.

AP3 is also equipped with detailed county-level vital statistics
inclusive of population and mortality rate data for 19 different
age groups and 5 different major racial/ethnic groups (Clay et al.
2019): Native Americans, Asian Americans, Black Americans,
Hispanic Americans, and White Americans. We sourced the data

on population and mortality rates for these five racial/ethnic
groups from the U.S. Census Bureau and the Centers for Disease
Control and Prevention (CDC) WONDER databases (https://
wonder.cdc.gov/ Updated 22 December 2020; https://www.
census.gov Updated 8 October 2021).

The CDC WONDER database classifies racial groups as fol-
lows: American Indian or Alaska Native, Asian or Pacific Islander,
Black or African American, and White (corresponding to “Native
Americans,” “Asian Americans,” “Black Americans,” and “White
Americans,” respectively, in this paper). Furthermore, the database
separates the results by Hispanic ethnicity. Thus, to create the non-
Hispanic racial/ethnic groups, we chose the “non-Hispanic” desig-
nation for each of the four above-listed racial groups, and to clas-
sify “Hispanic Americans” as such, we used the “All Races”
Hispanic or Latino classification. This approach created the five
distinct racial/ethnic groupswe present in this paper.

The U.S. Census Bureau’s classification of racial/ethnic groups
(as described at https://www.census.gov/topics/population/race/
about.html) are as follows: For non-Hispanic racial groups, we
gathered data on populations of non-Hispanic “White alone,”
“Black or African American alone,” “Asian alone,” and “American
Indian and Alaska Native alone or in combinationwith other races.”
For Hispanic or Latino ethnicities, the U.S. Census Bureau reports
Hispanic populations, which can correspond to any of the races
listed above. Given that the four racial groups described abovewere
labeled “Non-Hispanic,” these five racial/ethnic categories are
mutually exclusive.

We downloaded the 2014 data on county-level populations
by age and racial/ethnic group from the Census (https://www2.
census.gov/programs-surveys/popest/datasets/2010-2017/counties/
asrh/cc-est2017-alldata.csv) and the 10-y average mortality for all
causes of death at the county level, ending in 2014 from CDC
WONDER. Table 1 reports the national average mortality rates
by age and racial/ethnic group. Because we used publicly avail-
able data, we did not require informed consent protocols or inter-
nal review board or ethics approvals.

To estimate the premature mortality risk faced by individuals
65 y of age or older attributable to exposure to PM2:5, AP3 uses a
health impact function of the following form:

Ma,i,t =Popa,i,tMRa,i,t 1−
1

expbPM2:5,i,t

� �
,

where Ma,i,t equals premature deaths attributable to PM2:5 expo-
sure for individuals 65 y of age or older, county (i), age cohort (a),
at time (t); b equals a statistically estimated coefficient from the ep-
idemiological literature; Popa,i,t equals population count for indi-
viduals 65 y of age or older, county (i), age cohort (a), at time (t);
PM2:5,i,t =PM2:5 concentration, county (i), time (t); and MRa,i,t
equals baselinemortality rate for age cohort (a), county (i), time (t).

The AP3 model concludes by attributing a monetary value to
mortality risk from PM2:5 by employing a Value of Statistical

Table 1. National baseline mortality rates 2005–2014, averages and
variance.

Racial/ethnic group Age 65–74 y Age 75–84 y Age 85+ y

Native Americans 0.021 (0.001) 0.047 (0.004) 0.109 (0.010)
Asian Americans 0.009 (0.002) 0.029 (0.007) 0.091 (0.020)
Black Americans 0.026 (0.002) 0.056 (0.007) 0.134 (0.017)
Hispanic Americans 0.014 (0.002) 0.037 (0.005) 0.104 (0.015)
White Americans 0.019 (0.000) 0.049 (0.000) 0.143 (0.000)

Note: Data are from CDC WONDER, Compressed Mortality File 1999–2016 Series 20
No. 2U, 2016, as compiled from data provided by the 57 vital statistics jurisdictions
through the Vital Statistics Cooperative Program. The data reflect crude rates or the
number of deaths per calendar year per 100,000 population [http://wonder.cdc.gov/cmf-
icd10.html (accessed 22 June 2019)].
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Life (VSL) approach (Viscusi and Aldy 2003). The VSL is the
marginal rate of substitution between money (typically wage
income) and mortality risk. It is not intended to reflect or capture
the value of the prevention of certain death. It is a rate of
exchange between money and small changes in risks of death.
The VSL parameter used in AP3 is the U.S. EPA’s preferred
value: about $8million in 2014 U.S. dollars. The VSL is applied
uniformly across persons of different incomes, ages, and racial/
ethnic groups. We calculated per capita mortality costs by divid-
ing the total mortality costs for each racial/ethnic group at the
county level by the relevant population. We then mapped the
county aggregate and per capita costs to demonstrate the geo-
graphic variability in pollution-related premature mortality
impacts. Our maps divided the distribution of per capita costs
into five classes, as defined by the Jenks classification method
and portrayed in map legends. The highest class shows the price
per capita for outlier counties and reflects the areas with the high-
est mortality costs per racial/ethnic group.

The focus of this analysis is to identify the influence of different
CRFs andvital statistics onmortality estimates across different expo-
sure levels and racial/ethnic groups. We used PM2:5 mortality CRFs
from the recent cohort study of 60,925,443 Medicare beneficiaries
across theUnited States followed over 13 y (2000 through 2012) (Di
et al. 2017). The study used zip code annual average PM2:5 concen-
trations, predicted through the use of an artificial neural network that
incorporated information such as satellite-basedmeasurements, sim-
ulation outputs from a chemical transport model, land-use terms, and
meteorological data. These were trained and validated against regu-
latory monitor data. The CRFs of the risk of death associated with a
10 lg=m3 increase in PM2:5 were estimated using a two-pollutant
Cox proportional-hazards model that controlled for ozone, sex,
racial/ethnic group, Medicaid eligibility, 5-y categories of age at
study entry, 15 zip code-level or county-level variables from various
sources, and a regional dummyvariable to account for compositional
differences in PM2:5 across theUnited States.

From Di et al. (2017), we obtained two sets of estimates: a
single linear (b) coefficient for the full cohort population, as well
as race/ethnicity-specific subgroup (b) coefficients.

We coupled the use of these alternativeCRF formswith different
ways of including baseline mortality rates. In total, we considered
the following four epidemiological strategies: the Di et al. (2017)
linear, non–race/ethnicity-specific CRF with both population-
weighted mortality rates and race/ethnicity-specific mortality rates,
and theDi et al. (2017) race/ethnicity-specific linear CRFswith both
population-weighted and race/ethnicity-specific mortality rates. All
hazard ratios (HR) and their associated confidence intervals (CI) are
listed in Table 2.

Policy Scenario 1: Uniform Increase in Underlying
Concentrations
Using the same model, CRFs, and data as in our analysis of
PM2:5-attributable premature mortality, we first modeled a scenario
of air-quality degradation, in which all counties experience an

increase of 1lg=m3 PM2:5. To do so, we ran AP3 twice: first
with the pollution baseline and oncewith an extra 1 lg=m3 of pollu-
tion. The results are the difference in outcomes across the two sce-
narios. The average baseline concentration across counties
(calculated at the population-weighted centroid of each county) is
7:1 lg=m3; this scenario therefore represents an 18% change in air
pollution on average, although given the variation in pollution
across counties, the percentage increase can exceed 100%. The
intent of this simulation is to isolate differences in modeling strat-
egies across racial/ethnic groups and age groups. That is, by stand-
ardizing the PM2:5 change, we can clearly attribute differences in
resultingmortality effects to the CRFs and vital statistics used.

Policy Scenario 2: MATS Abatement Technology
Our second scenario modeled the health effects of the MATS pol-
icy using AP3. Specifically, we used data on abatement technology
adopted by generators in direct response to MATS policy. The
U.S. Department of Energy’s Energy Information Administration
Form 860 provides information at the power plant level on the first
year in which the generators usedMATS abatement technology for
compliance with the policy.We used central engineering estimates
of emissions reductions rates for the compliance technology
(Kaminski 2003; U.S. EPA n.d.; Ake and Licata 2011) to infer
what emissions of SO2 and PM2:5 would have been had firms not
elected to use the technology.

For the MATS scenario, we employed only the race/ethnicity-
specific mortality rates paired with both the race/ethnicity-
nonspecific linear and the race/ethnicity-specific CRF from Di
et al. (2017).

Results

PM2:5-Attributable Premature Mortality
Total premature mortality attributable to PM2:5 exposure among
people over the age of 65 y in 2014 across the United States
ranged from 121,331 to 132,696 deaths (Table 3). Table 3 reports
attributable mortality estimates for all racial/ethnic groups, using
the six different CRF approaches discussed in the “Materials and
Methods” section. The Di et al. (2017) linear CRF with mortality
rates not differentiated by racial/ethnic group yielded an estimate
of 121,331 deaths among persons over 65 y of age in 2014 (see
Table 3, column 1).

We first examined the effect of imposing race/ethnicity-specific
mortality rates relative to population-weighted average mortality
rates. As Table 1 demonstrates, among people younger than 85 y,
Black Americans have the highest mortality rates, and for those
older than 85 y,White Americans have the highestmortality rates.

The use of race/ethnicity-specific mortality rates did not signifi-
cantly affect the total number of deaths, but rather it distributed them
differently across racial/ethnic groups by altering the race/ethnicity-
specific distribution of premature mortality risk. Specifically, we
found that using population-weighted averagemortality rates under-
estimated the health effects of air quality on Black Americans by

Table 2. Concentration–response functions.
Exposure Racial/ethnic group Hazard ratio (95% CI) Reference

Linear across all PM2:5 levels All 1.06 (1.04, 1.08) Krewski et al. 2009
All 1.073 (1.071, 1.075) Di et al. 2017
White American 1.063 (1.060, 1.065) Di et al. 2017
Black American 1.208 (1.199, 1.217) Di et al. 2017
Asian American 1.096 (1.075, 1.117) Di et al. 2017
Hispanic American 1.116 (1.100, 1.133) Di et al. 2017
Native American 1.100 (1.060, 1.140) Di et al. 2017

Note: The reported hazard ratios are for mortality risk associated with 10 lg=m3 increase in PM2:5. CI, confidence interval.
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approximately 11%, regardless of the CRF function employed
(comparing Table 3, column 1 to column 2; and column 3 to column
4). This approach also underestimated the health benefits of air-
quality improvements onWhite Americans, although the effect was
much smaller (2%), and it overestimated the impacts on other racial/
ethnic groups.

Our next set of results demonstrated the effect of employing
the race/ethnicity-specific linear CRFs (Table 3, columns 3 and
4) relative to linear, non–race/ethnicity-specific CRF (Table 3,
columns 1 and 2). Using the race/ethnicity-specific CRF
increased total deaths by 9% relative to the results under the lin-
ear CRF (comparing columns 1 to 3 and 2 to 4).

However, the difference across racial/ethnic groups was more
pronounced. Figure 1 graphically shows how much the non–race/
ethnicity-specific CRF from Di et al. (2017) misestimates the
impacts across all racial/ethnic groups. The figure shows the per-
centage difference in PM2:5-attributable mortality from using a
race/ethnicity-specific CRF relative to the non–race/ethnicity-
specific CRF. Using the race/ethnicity-specific linear CRFs
resulted in significantly greater premature mortality for racial/
ethnic minorities, with Black Americans having over 150% addi-
tional premature deaths than predicted using the non–subgroup-

specific CRF. Similarly, Hispanic Americans had 52% additional
premature deaths, and Native Americans and Asian Americans
had approximately 30% additional premature deaths than pre-
dicted under the non–subgroup-specific CRF. However, White
Americans had 13% fewer deaths under this approach.

Further, under the race/ethnicity-specific CRF, the pollution-
attributed premature mortality among older Black Americans
accounted for as much as 25% of all PM2:5-attributable deaths in
populations over 65 y of age, although nationally, older Black
Americansmake up only 9% of the total population (this can be seen
in Table 3, comparing the percentages in column 5 to the percen-
tages in the other columns). In contrast, PM2:5-associated mortality
was proportional to the population share for older White
Americans in the scenarios without race/ethnicity-specific
CRFs (see Table 3, columns 1–2), but this changed when we
employed race/ethnicity-specific CRFs. As can be seen in Table 3,
columns 3 and 4, the race/ethnicity-specific CRF for White
Americans resulted in a PM2:5-associated mortality burden of
only 65%, even though the population share of this group was
roughly 80%.

Table 2 providesmortality risk HRs associatedwith a 10lg=m3

increase in PM2:5 (and corresponding 95% CIs) for the different

Table 3. Total estimated race/ethnicity-specific PM2:5-attributable deaths among populations age 65 y and older in the United States using different concentra-
tion–response functions and baseline mortality rates.

Race/ethnicity

Underlying mortality data National share of older populations by
racial/ethnic group, as a percentage
of total population above 65 y of age

Population-
weighted average

Race/
ethnicity-specific

Population-
weighted average

Race/
ethnicity-specific

Native Americans 850 (1%) 632 (1%) 1,136 (1%) 846 (1%) 1%
Asian Americans 4,349 (4%) 2,787 (2%) 5,585 (4%) 3,580 (3%) 4%
Black Americans 12,013 (10%) 13,294 (11%) 29,994 (23%) 33,188 (25%) 9%
Hispanic Americans 7,600 (6%) 6,011 (5%) 11,581 (9%) 9,161 (7%) 8%
White Americans 96,519 (80%) 98,607 (81%) 84,101 (64%) 85,921 (65%) 79%
All groups 121,331 (100%) 121,331 (100%) 132,398 (100%) 132,696 (100%) 100%

Total costs
(in $ billions 2014)

1,059.1 1,059.1 1,155.7 1,158.3 —

CRF employed Linear Linear Race/ethnicity-
specific

Race/ethnicity-
specific

—

Note: The relevant concentration–response functions are from Di et al. (2017). See Table 2. —, no data available; CRF, concentration–response function.

33.78
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Figure 1. Percentage difference in premature mortality between the linear, non–race/ethnicity-specific Di et al. (2017) and the race/ethnicity-specific Di et al.
(2017) CRFs. The figure represents the difference in PM2:5-attributable mortality between using non–race/ethnicity-specific CRF and using race/ethnicity-spe-
cific CRFs. The baseline in the difference is non–racial/ethnic specific CRFs; thus the percentage represents how much higher the mortality estimate is when
using a racial/ethnic-specific CRF. The relevant CRFs are from Di et al. (2017); see Table 2. Note: CRF, concentration–response function.
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CRFs. Table 4 presents the results fromour analyses using the upper
and lower bounds of the CRFCIs presented in Table 2.

Some degree of overlap in CIs occurred in the case of Native
Americans, given the large uncertainty around the race/ethnicity-
specific CRF for this racial group. As shown in Table 4, the esti-
mates for Native Americans had similar central estimates across
the two CRFs (846 vs. 850), with the race/ethnicity-specific
CRFs resulting in a CI of 526 to 1,145. All other racial/ethnic
groups had clear differentiation between the results for the differ-
ent CRFs employed.

We next estimated the cost of PM2:5-attributable prematuremor-
tality in older populations by applying a uniform VSL to all prema-
ture deaths caused by pollution. Multiplying the total number of
deaths across all racial/ethnic subgroups as listed in Table 3 by our
VSL of approximately $8million, we found that totalmortality costs
are between $1,059–1,155 billion dollars (in 2014U.S. dollars).

To demonstrate the geographic distribution of costs associated
with PM2:5-attributable premature mortality, we created maps
depicting per capita mortality costs for each racial/ethnic group
(Figures 2–7), using the race/ethnicity-specific Di et al. (2017)
CRFs. Maps depicting aggregate mortality costs by race/ethnicity
can be found in the supplemental material, Figures S1–S5. On a
per-capita basis, costs exhibited a somewhat homogenous distribu-
tion across the country and across racial/ethnic groups, though the
tails of the distributions differed significantly across race/
ethnicity. Specifically, the highest per-capita mortality costs for
non-White racial/ethnic groups ranged between 4 and 6 times
higher than that for White Americans, as can be seen in the map
legends. For example, the highest class of per capita mortality
costs for Black Americans (Figure 3) and Hispanic Americans
(Figure 5) was above $20,000, though the highest class of per cap-
ita costs for White Americans (Figure 7) was only above $3,500.

Policy Scenario 1: Uniform Increase in Baseline
Concentrations
Table 5 reports the aggregate PM2:5-related exposure deaths among
populations above 65 y of age in 2014 according to the different
CRFs, and it then compares these to the deaths produced by a simu-
lation in which 1 lg=m3 is added to all county-level concentrations.
Across all CRFs and underlying health data employed, we found
that PM2:5-related deaths would increase by approximately 10%
nationally under this uniform air-quality degradation. Applying a
uniform VSL to this increase in PM2:5-attributable premature mor-
tality resulted in approximately $100 billion in mortality costs,
although this amount can increase to $113 billion, depending on the
CRF andmortality rates employed (see Table 5, final column).

Table 6 continues to explore the mortality incidence of the uni-
form 1 lg=m3 PM2:5 increase. In this table, the focus is on both
incidence by racial/ethnic group and age group for populations
over 65 y of age. The numbers in the table report the total mortality
burden due to the uniform PM2:5 increase relative to White
American populations, by age group (thus, all values for White
American population mortality equal 1). Mortality burden was

here defined as PM2:5-attributed mortality risk from the change in
pollution, specific to each demographic.

These results demonstrate that under the linear [non–race/
ethnicity-specific; Di et al. (2017)] CRF, there is little differentiation
in mortality burden across racial/ethnic groups. Native Americans
of all age groups had a slightly larger burden thanWhite Americans
of the same corresponding ages. Black Americans under 75 y of age
also incurred a slightly larger mortality burden than White
American populations of the same age (though results appear to
equalize for older age groups). Furthermore, using this CRF resulted
inHispanic Americans andAsianAmericans having a lowermortal-
ity burden than White Americans (with ratios less than 1 for all
racial/ethnic group/age group combinations).

However, when we used race/ethnicity-specific CRFs, we
found significantly different outcomes for all people of color,
except for Asian Americans (a group that consistently had a lower
pollution-related mortality burden than White Americans had, in
part due to lower underlying mortality rates; see Table 1) from a
uniform 1lg=m3-PM2:5 increase in pollution. Black Americans of
all ages above 65 y incurred mortality burdens up to 3 and one-half
times greater than those of White Americans of the same age (the
race/ethnicity-specific burden, relative to White Americans, pre-
sented in Table 6 for Black Americans is 2.4–3.6). Similarly,
Hispanic Americans sustained a 20%–28% greater mortality bur-
den than White Americans (as the race/ethnicity-specific burden,
relative to White Americans, presented in Table 6 for Hispanic
Americans is 1.205–1.284). Native American populations under
the age of 85 y experienced a 36%–55% higher mortality burden
thanWhite Americans.

Policy Scenario 2: MATS Abatement Technology
In this scenario, wemodeled how the abatement technology adopted
due to MATS affected pollution and, in turn, premature mortality.
Figure 8 shows that, had these technologies not been adopted, PM2:5
concentrations would have been on average 0:5lg=m3 higher
across all counties, reflecting roughly a 5% increase. However, we
report significant variation in this increase, with changes up to
3 lg=m3 in counties near the Ohio River. Table 7 presents the
changes in ambient concentrations under the MATS scenario and
compares it to the uniform change in ambient concentration. On av-
erage, the increase ismuch smaller from theMATS relative to a uni-
form 1 lg=m3-change in concentrations, though the increase goes
as high as 50% for some counties.

We next calculated the benefits across racial/ethnic groups in
terms of avoided prematuremortality ofMATS abatement technol-
ogy. Table 8 shows the premature deaths avoided and monetary
benefits of MATS abatement technology, under the linear and the
race/ethnicity-specific CRFs from Di et al. (2017) (both of these
results employ race/ethnicity-specific underlyingmortality rates).

We found that, across all racial/ethnic groups, abatement
technology led to 2,631–2,763 avoided premature deaths in older
populations in 2015 and 4,079–4,261 in 2016, depending on the
CRF employed (see Table 8). As can be seen in Table 8, the vast

Table 4. Confidence intervals, deaths by racial/ethnic group for CRFs.

Linear CRF point estimates Race/ethnicity-specific linear CRF point estimates

Race/ethnicity Lower bound Central Upper bound Lower bound Central Upper bound

Native Americans 828 850 871 526 846 1,145
Asian Americans 4,238 4,349 4,459 2,858 3,580 4,271
Black Americans 11,708 12,013 12,316 32,016 33,188 34,340
Hispanic Americans 7,406 7,600 7,793 8,019 9,161 10,337
White Americans 94,048 96,519 98,973 82,061 85,921 88,465
All racial/ethnic groups 118,228 121,331 124,411 125,480 132,696 138,559

Note: All estimates above use race/ethnicity-specific mortality rate estimates and CRFs from Di et al. (2017), as reported in Table 2. CRF, concentration–response function.
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majority (72%–85%) of estimated avoided deaths were for White
American populations, followed next by 10%–23% of avoided
deaths for Black American populations (the range depends on the
CRF employed).

Importantly, the use of the linear, non–race/ethnicity-specific Di
et al. (2017) CRF underestimated total avoided deaths due toMATS
policy by about 4.4% (for both 2015 and 2016 combined), although
this effect was much larger for certain racial/ethnic groups.
Specifically, we found that using a linear, non–race/ethnicity-
specific approach (as reported in Table 6, columns 1 and 3) would
underestimate (relative to using race/ethnicity-specific data and
CRFs) the benefits to older (above 65 y of age) Black American

communities by almost 60%, whereas the benefits to older White
American communities are overestimated by about 14%.

Applying a VSL of $8million to these lives saved resulted in
the linear non–racial/ethnic specific CRF approach underestimat-
ing the benefits of MATS abatement technology by at least
$2:7 billion from 2015 to 2016.

Discussion
Summary of Results
Our analysis demonstrated that the use of non–race/ethnicity
stratified CRF estimates in air pollution policy assessments (an

Figure 2. PM2:5 aggregate and per capita damages, total population. (A) PM2:5 aggregate damages, total population. (B) PM2:5 per capita damages, total
population.
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approach that ignores differences in vulnerability to impacts
across racial/ethnic subgroups) resulted in underestimates of the
health impacts overall and, in particular, the impact on Black
American and Hispanic populations. By using race/ethnicity-
specific CRFs we highlight in this paper the inequities of air
pollution-related mortality and demonstrate that the common
practice of not differentiating these CRFs by racial/ethnic group
undervalues air-quality improvements to racial/ethnic minority
communities.

Specifically, we found that by using race/ethnicity-specific
CRFs and underlying health (mortality) data, rather than the prev-
alent approach used in most federal policy analyses, these
changes a) caused an increase in the baseline estimates of aggre-
gate deaths (by almost 10%); b) attributed a greater share of these

baseline pollution-related deaths to Black American, Hispanic
American, and Asian American populations; and c) implied that,
in a reverse uniform 1 lg=m3 PM2:5 pollution reduction scenario,
benefits would accrue more to Black Americans (∼ 3× ), Native
Americans (∼ 1:4× ), and Hispanic Americans (∼ 1:3× ) than to
White Americans (see Table 6).

For Black American populations in particular, the effect of
using race/ethnicity-specific exposure–response functions pro-
duces the largest changes in policy impacts: We found that the
mortality burden for Black Americans can reach 25% of all
deaths, although this group accounts for only 9% of total older
populations (see Table 3, column 5).

Furthermore, using a real-world example of the MATS pol-
icy, we demonstrated how federal policy to improve air quality

Figure 3. County per capita PM2:5 damages, Black Americans.

Figure 4. County per capita PM2:5 damages, Asian Americans.
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can produce measurable environmental justice improvements by
reducing health disparities from air pollution exposure. It also
showed that we will continue to significantly underpredict the
environmental justice benefits of energy policies if we do not
employ the most up-to-date assessments of CRFs that are specific
to different racial/ethnic subgroups.

An assessment of the monetary cost of mortality in older pop-
ulations attributed to a 1 lg=m3 increase in PM2:5 (approximately
$113 billion) underlined the general conclusion of other studies
that PM2:5 pollution represents an enormous cost to society
(Tschofen et al. 2019). For context, this cost amounts to approxi-
mately double the estimated cost of all major federal rules issued

by the U.S. EPA from 2006 to 2016 (Office of Management and
Budget 2017). This research thus highlights important inequities
associated with current federal policy approaches, concerning
pollution exposure for people of color, in particular for Black
Americans.

External Validity of Results
Our estimate of approximately 100,000 premature deaths from
PM2:5 exposure for populations over the age of 65 is in line with
previous estimates. Tessum et al. (2019) estimated 131,000
deaths in 2015 using a different integrated assessment model and

Figure 5. County per capita PM2:5 damages, Hispanic Americans.

Figure 6. County per capita PM2:5 damages, Native Americans.
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the Krewski et al. CRF (2009). Although this estimate included
all persons over the age of 25, older individuals incur the major-
ity of premature mortality risk. Further, Burnett et al. (2018)
report a range of premature deaths from PM2:5 in the U.S. of
between 121,000 and 213,000, inclusive of all age groups.

Regarding the results for the MATS analysis, our results are
similar to EPA’s estimates in the lower bound of the 2011 MATS
Regulatory Impact Analysis (4,400 avoided deaths for 2016, for
ages above 30 y) (U.S. EPA 2011a). We would expect to find esti-
mated avoided deaths at the lower bounds of the U.S. EPA’s esti-
mates for two reasons. First, we estimated only the effects on age
groups above 65 y, whereas the U.S. EPA estimated this for all
ages above 30 y. Second, we modeled only the effect of abatement
technology on reduced mortality and ignored any air-quality
improvements that would arise from the exit of coal plants, which
likely contributed to an even greater reduction in deaths.

Strengths and Limitations of Our Work
A strength of this study is that the Di et al. (2017) CRFs that we
employed are from a large nationally representative longitudinal
cohort study, including racial/ethnic minority and rural popula-
tions, in contrast to Krewski et al. (2009), which consisted of a
predominantly urban White American population.

The Di et al. (2017) study also used fine-scale air pollution
exposure estimates and may be less likely to be biased due to ex-
posure misclassification and more likely to be representative of

exposures and effects across the exposure range relevant to the
United States than the CRFs presented in Krewski et al. (2009).

An additional strength of the present paper is our reliance on
multiyear aggregated baseline mortality rates from the CDC. Our
use of comprehensive, publicly available mortality data ensures
that spatial distribution of mortality rates reflects robust patterns
in risk and is not an artifact of events during a single year.

We note several limitations to our work. First, whereas the
U.S. EPA’s NEI is a comprehensive source of national air pollu-
tion emissions (U.S. EPA 2016), our reliance on it introduced
uncertainty in the baseline estimates of PM2:5 concentrations. As
with any model, the manner in which the AP3 integrated assess-
ment model (see “Material and Methods” section) links emissions
to concentrations is not perfect. We note, however, that its per-
formance against the U.S. EPA’s air-quality system monitoring
network for PM2:5 and chemical transport models has been eval-
uated in prior work and found to be satisfactory for policy analy-
sis (Gilmore et al. 2019).

Another limitation to our work is the geographic aggregation
at the county level, given the structure of AP3. Intracounty PM2:5
concentrations may vary significantly, and Black Americans are
generally more likely to live near highways and other major
emissions sources within a county (Tian et al. 2013; Perlin et al.
1999). Furthermore, county-level mortality rates may overlook
significant variation in mortality rates within the county itself,
especially in larger counties (Southerland et al. 2021). Overall,
this points to the need for investigation of these impacts at a scale

Figure 7. County per capita PM2:5 damages, White Americans.

Table 5. Change in PM2:5-attributable deaths from 1 lg=m3 uniform increase in PM2:5.

Functional form Reference Mortality rates

2014 National
Emissions Inventory
(thousand deaths)

Plus 1 lg=m3

(thousand deaths)
Difference,

thousand deaths (%)
Monetary cost
($millions 2014)

Linear CRF Di et al. 2017 Weighted average 121.3 134.2 12.9 (10.6) 112,320
Linear CRF Di et al. 2017 Race/ethnicity-specific 121.3 134.2 12.9 (10.6) 112,320
Race/ethnicity-specific

linear CRF
Di et al. 2017 Weighted average 132.4 145.9 13.5 (10.2) 113,400

Race/ethnicity-specific
linear CRF

Di et al. 2017 Race/ethnicity-specific 132.7 146.2 13.5 (10.2) 113,400

Note: Weighted-average mortality rates imply a mortality rate that is a population-weighted average across all racial/ethnic categories. The relevant CRFs are from Di et al. (2017); see
Table 2. CRF, concentration–response function.
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finer in resolution than the county, and further research on identi-
fying subcounty variation in pollution exposure is warranted
(such as provided by the U.S. EPA’s Downscaler Model; U.S.
EPA 2017). However, that research is outside the scope of this
paper, and our current estimates are likely a lower bound on the
actual health impacts of air pollution on Black American com-
munities, because county averages will smooth over these hyper-
local differences in exposure and susceptibility.

Implications for Policy
Studies have shown that historically racist policies such as red
lining and citing of highways and polluting facilities have

resulted in racial/ethnic minority and other disadvantaged popu-
lations living in areas with a disproportionately higher number
of emitting facilities (Mikati et al. 2018; Banzhaf et al. 2019)
and facing higher PM2:5 exposure burden in comparison with
White American populations. In addition, policies and actions
to reduce air pollution are generally concentrated in wealthier
and less diverse populations, resulting in widening disparities
(Jbaily et al. 2020; Richmond-Bryant et al. 2020). Yet the issues
of air pollution–related health impact inequities extend beyond
exposure alone. Many of the same racist policies, institutional
practices, and poor cultural representations have caused disin-
vestment in racial/ethnic minority communities, resulting in dif-
ferential quality and distribution of housing, transportation,

Table 6. Race/ethnicity-specific burden from 1 lg=m3 uniform increase in PM2:5, relative to white Americans.

Scenario Racial/ethnic group Age 65–74 y Age 75–84 y Age >85 y

Linear CRF (Di et al. 2017), population–weighted
average mortality rates

Native Americans 1.069 1.039 1.021
Asian Americans 0.859 0.874 0.895
Black Americans 1.060 1.010 0.973
Hispanic Americans 0.919 0.912 0.923
White Americans 1.000 1.000 1.000

Racial/ethnic group Age 65–70 y Age 75–80 y Age >85 y

Race/ethnicity-specific mortality rates and
race/ethnicity-specific CRF (Di et al. 2017)

Native Americans 1.550 1.361 0.995
Asian Americans 0.705 0.800 0.884
Black Americans 3.631 2.946 2.434
Hispanic Americans 1.284 1.265 1.205
White Americans 1.000 1.000 1.000

Note: The relevant CRFs are from Di et al. (2017); see Table 2. The “Linear CRF” corresponds to the “All Racial/Ethnic Groups” CRF. CRF, concentration–response function.

Figure 8.MATS-induced change in PM2:5, 2016.
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economic opportunity, education, food, access to health care,
and beyond. All of these inequities manifest in health dispar-
ities, higher underlying mortality rates, and greater susceptibil-
ity to pollution-caused disease (Morello-Frosch et al. 2011;
Payne-Sturges et al. 2021).

During the COVID-19 pandemic of 2020–2021, these same
pathways contributed to Black Americans facing an inequitably
larger mortality burden (2 times larger than for White Americans;
APM Research Lab 2021) from SARS-CoV-2 (Afifi et al. 2020,
Doumas et al. 2020, Persico and Johnson 2021) and were laid bare
when race/ethnicity-specific data were collected and used. Though
these issues are outside the scope of our study, our findings demon-
strate the importance of collecting and using the most up-to-date
race/ethnicity-specific data when considering policy-making deci-
sions. In fact, the U.S. EPA’s own integrated science assessment
concludes that “the evidence is adequate to conclude that non-
Whites, particularly Blacks, are at increased risk for PM2:5-related
health effects based on studies examining differential exposure and
health effects” (U.S. EPA 2019).

Our results emphasize the importance of conducting health
impact assessments of air quality–related policies with a recogni-
tion of the underlying differences across racial/ethnic groups. An
understanding that the marginal effect of air-quality changes will
not affect all racial/ethnic groups in the same way is critical, par-
ticularly given the nation’s pervasive and systemic racial/ethnic
injustices. Assuming that all racial/ethnic groups are equally
affected by air pollution will continue to contribute to injustices
faced by people of color, especially in light of policies that can
alter the magnitude or distribution of pollution across racial/eth-
nic groups.

Fundamentally, the choice of which vital statistics and CRFs to
use when estimating the effect of any air quality–related policywill
directly affect its calculated benefits and resulting environmental
justice implications. Several large-scale and notable federal bene-
fit–cost analyses that assess PM2:5 mortality impacts generally use
mortality rates that are averaged across all racial/ethnic groups and
pair this with linear non–race/ethnicity-specific CRFs (see for
example, U.S. EPA 2011a, 2011b, 2012), leading to amisrepresen-
tation of the race/ethnicity-specific outcomes of policies.

Our results have particularly important implications for
the NAAQS program of the CAA, which regulates particulate pol-
lution. The law explicitly mandates that these standards must be set

at a level that protects public health with an “adequate margin of
safety” (National Primary and Secondary Ambient Air Quality
Standards). In particular, the U.S. EPA must also consider the
impacts on the health of vulnerable populations (Executive Order
12898; Executive Order 14008). Our study demonstrated the pol-
icy importance of recognizing the fact that air pollution risks differ
by racial/ethnic group; thus, parameterization of overall national
standards should be tailored to protect the most vulnerable sub-
group. In addition, the NAAQS program is structured around air-
quality criteria that are to be based on the best available science. To
date, epidemiological studies were unable to reliably disaggregate
CRFs specific to vulnerable subgroups. Given the recent innova-
tions and statistical power of Di et al. (2017), and in light of the
associated racial/ethnic disparities and underestimated aggregate
mortality impacts, U.S. EPA should take these disparate impacts
into consideration when making a determination regarding what is
an adequately protective “margin of safety” in future NAAQS
reviews.

This paper demonstrated the importance of choosing the most
accurate specification when estimating health effects of air qual-
ity due to policy changes, because underlying mortality rates,
pollution exposure, and pollution susceptibility differ signifi-
cantly across racial/ethnic groups. Using generalized health data
to estimate the benefits of air-quality policies will lead to incor-
rect estimates, and likely underestimate the benefits of these poli-
cies to most racial/ethnic minorities. Thus, it is essential that
federal agencies perform regulatory impact analyses with the use
of as much granular data as possible, both in terms of CRFs and
mortality rates. Methods should adequately represent differences
in health outcomes by demographic group and across ambient
pollution levels, as demonstrated herein. Wherever such break-
downs are not possible, gap-filling using prior methods could be
employed. These changes may significantly improve future air-
quality policy outcomes and help reduce environmental justice
disparities.
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Table 8. Deaths avoided and monetary benefits in older populations from MATS, 2015 and 2016.

Deaths avoided Monetary benefits ($millions 2014)

2015 2016 2015 2016

Racial/ethnic group Linear CRF
Racial/ethnic-
specific CRF Linear CRF

Racial/ethnic-
specific CRF Linear CRF

Racial/ethnic-
specific CRF Linear CRF

Racial/ethnic-
specific CRF

Native Americans 12 16 16 21 103 137 139 184
Asian Americans 24 31 54 69 211 268 473 600
Black Americans 280 658 413 961 2,440 5,746 3,600 8,388
Hispanic Americans 53 79 103 154 460 687 901 1,342
White Americans 2,262 1,980 3,494 3,057 19,800 17,285 30,490 26,683
All groups 2,631 2,763 4,079 4,261 22,970 24,122 35,610 37,197

Note: All CRFs are from Di et al. (2017), see Table 2. The “linear CRF” corresponds to the “All Racial/Ethnic Groups” value. CRF, concentration–response function.

Table 7. Changes in ambient concentration under two counterfactual scenarios.

Scenario Average increase in concentrations % Increase, on average % Increase, minimum % Increase, maximum

Uniform degradation of air quality 1 lg=m3 17.9% 4.6% 101.4%
Removal of Mercury Air Toxics

Standards (MATS) abatement technology
0:23 lg=m3 3.3% 0% 50.6%

Note: The minimum and maximum numbers reflect the percentage increase at the county with the lowest and highest increase, respectively.
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